added multiple comments and optimizing

This commit is contained in:
Gabriel Augendre 2015-01-03 03:17:44 +01:00
parent 6fee91e0c4
commit b2fb7bb25b

View file

@ -18,136 +18,27 @@ __author__ = 'gaugendre'
import sys import sys
def string_from_list(line): def string_from_list(line) -> str:
"""
Makes a string from a line of squares.
:param line: A line (list) of squares to make a string from.
:type line: list
:return: A string containing all the states of the squares in the list.
"""
string = "" string = ""
for square in line: for square in line:
string += square.state string += square.state
return string return string
class Grid: def non_space_element(line) -> str:
def __init__(self, size, array=None): """
_squares = [] Returns the number of non space characters in a string.
square_list = [] :param line: The line where to count characters.
i = 0 :type line: str
while i < size: :return: The number of non space characters.
_squares.append([]) """
j = 0 return len(line.replace(' ', ''))
while j < size:
if array:
_squares[i].append(Square(self, i, j, array[i][j]))
else:
_squares[i].append(Square(self, i, j))
j += 1
square_list.extend(_squares[i])
i += 1
self._squares = _squares
self.size = size
self.square_list = square_list
def _get_squares(self):
return self._squares
squares = property(fget=_get_squares)
def square(self, horiz, vert):
return self._squares[vert][horiz]
def __repr__(self):
representation = ""
for line in self._squares:
for square in line:
to_print = square.state
if to_print == ' ':
to_print = '_'
representation += to_print + ' '
representation += "\n"
return representation
def squares_on_line(self, line_number):
return self.squares[line_number]
def squares_on_column(self, col_number):
col = []
for line in self.squares:
col.append(line[col_number])
return col
def solve_three_in_a_row(self):
for square in self.square_list:
if square.is_empty():
v_prev = square.prev_vert()
v_next = square.next_vert()
h_prev = square.prev_horiz()
h_next = square.next_horiz()
if not square.switched and v_prev and v_prev.state != ' ':
v_p_prev = v_prev.prev_vert()
if v_p_prev and v_p_prev.state == v_prev.state:
square.state = v_prev.opposite_state()
elif v_next and v_next.state == v_prev.state:
square.state = v_prev.opposite_state()
if not square.switched and v_next and v_next.state != ' ':
v_n_next = v_next.next_vert()
if v_n_next and v_n_next.state == v_next.state:
square.state = v_next.opposite_state()
if not square.switched and h_prev and h_prev.state != ' ':
h_p_prev = h_prev.prev_horiz()
if h_p_prev and h_p_prev.state == h_prev.state:
square.state = h_prev.opposite_state()
elif h_next and h_next.state == h_prev.state:
square.state = h_prev.opposite_state()
if not square.switched and h_next and h_next.state != ' ':
h_n_next = h_next.next_horiz()
if h_n_next and h_n_next.state == h_next.state:
square.state = h_next.opposite_state()
def solve(self):
for i in range(0, 2, 1):
self.solve_three_in_a_row()
self.solve_same_number()
self.solve_different_lines_or_columns()
def solve_same_number(self):
for square in self.square_list:
if square.is_empty():
same_line = square.same_line()
count_red = 0
count_blue = 0
for line_square in same_line:
if line_square.state == 'B':
count_blue += 1
elif line_square.state == 'R':
count_red += 1
if count_red == self.size / 2:
square.state = 'B'
elif count_blue == self.size / 2:
square.state = 'R'
if not square.switched:
same_column = square.same_column()
count_red = 0
count_blue = 0
for line_square in same_column:
if line_square.state == 'B':
count_blue += 1
elif line_square.state == 'R':
count_red += 1
if count_red == self.size / 2:
square.state = 'B'
elif count_blue == self.size / 2:
square.state = 'R'
def solve_different_lines_or_columns(self):
pass
# for square in self.square_list:
# line = string_from_list(square.same_line())
class Square: class Square:
@ -157,10 +48,11 @@ class Square:
written in it and displayed ('R', 'B' or ' '). written in it and displayed ('R', 'B' or ' ').
""" """
def __init__(self, grid, vert, horiz, state=' '): def __init__(self, grid, vert, horiz, state=' ', base=False):
self.horiz = horiz self.horiz = horiz
self.vert = vert self.vert = vert
self.switched = False self.switched = False
self.base = base
if isinstance(grid, Grid): if isinstance(grid, Grid):
self.grid = grid self.grid = grid
else: else:
@ -292,3 +184,242 @@ class Square:
line_list.append(self) line_list.append(self)
line_list.extend(self.all_next_vert()) line_list.extend(self.all_next_vert())
return line_list return line_list
def solve_three_square(square) -> bool:
"""
Checks before and after the square if there are two squares of the
same color in order to prevent 'three in a row'.
:param square: The Square to check
:type square: Square
:return: A boolean : True if something has been done, else False.
"""
solved = False
if square.is_empty():
v_prev = square.prev_vert()
v_next = square.next_vert()
h_prev = square.prev_horiz()
h_next = square.next_horiz()
if not square.switched and v_prev and not v_prev.is_empty():
v_p_prev = v_prev.prev_vert()
if v_p_prev and v_p_prev.state == v_prev.state:
square.state = v_prev.opposite_state()
v_p_p_prev = v_p_prev.prev_vert()
if v_p_p_prev:
solve_three_square(v_p_p_prev)
elif v_next and v_next.state == v_prev.state:
square.state = v_prev.opposite_state()
if not square.switched and v_next and not v_next.is_empty():
v_n_next = v_next.next_vert()
if v_n_next and v_n_next.state == v_next.state:
square.state = v_next.opposite_state()
v_n_n_next = v_n_next.next_vert()
if v_n_n_next:
solve_three_square(v_n_n_next)
if not square.switched and h_prev and not h_prev.is_empty():
h_p_prev = h_prev.prev_horiz()
if h_p_prev and h_p_prev.state == h_prev.state:
square.state = h_prev.opposite_state()
h_p_p_prev = h_p_prev.prev_horiz()
if h_p_p_prev:
solve_three_square(h_p_p_prev)
elif h_next and h_next.state == h_prev.state:
square.state = h_prev.opposite_state()
if not square.switched and h_next and not h_next.is_empty():
h_n_next = h_next.next_horiz()
if h_n_next and h_n_next.state == h_next.state:
square.state = h_next.opposite_state()
h_n_n_next = h_n_next.next_horiz()
if h_n_n_next:
solve_three_square(h_n_n_next)
if square.switched:
solved = True
return solved
class Grid:
"""
A Grid is a square array containing Squares.
"""
def __init__(self, size, array=None):
"""
Instantiate a grid from a size and maybe an array of characters.
If an array is provided, the grid will be filled with squares
with state corresponding to the character in the array.
:param size: The size of the grid (either width or length).
:type size: int
:param array: The array used to fill the grid.
:type array: list
"""
_squares = []
square_list = []
squares_to_modify = []
i = 0
while i < size:
_squares.append([])
j = 0
while j < size:
if array:
value = array[i][j]
if value != ' ':
_squares[i].append(Square(self, i, j, value, True))
else:
_squares[i].append(Square(self, i, j))
squares_to_modify.append(_squares[i][j])
else:
_squares[i].append(Square(self, i, j))
squares_to_modify.append(_squares[i][j])
j += 1
square_list.extend(_squares[i])
i += 1
self._squares = _squares
self.size = size
self.square_list = square_list
self.squares_to_modify = squares_to_modify
@property
def squares(self) -> list:
"""
A method to get the squares in the grid.
:return: The squares in the grid.
"""
return self._squares
@squares.setter
def squares(self, array):
"""
Replace the squares in the grid with the one provided in the array.
The array must be a list of list of characters (square array).
:param array: The array to replace the squares.
:type array: list
"""
squares = []
i = 0
size = len(array)
while i < size:
squares.append([])
j = 0
while j < size:
squares[i].append(Square(self, i, j, array[i][j]))
j += 1
i += 1
self._squares = squares
def square(self, horiz, vert) -> Square:
"""
Used to get a specific square in the grid.
:param horiz: The horizontal position of the square to get.
:type horiz: int
:param vert: The vertical position of the square to get.
:type vert: int
:return: The square at the given position
"""
return self._squares[vert][horiz]
def __repr__(self):
representation = ""
for line in self._squares:
for square in line:
to_print = square.state
if to_print == ' ':
to_print = '_'
representation += to_print + ' '
representation += "\n"
return representation
def squares_on_line(self, line_number) -> list:
"""
Returns the squares on a line specified by the number
(starting from zero).
:param line_number: The line to get.
:type line_number: int
:return: The list containing the squares on the required line.
"""
return self.squares[line_number]
def squares_on_column(self, col_number) -> list:
"""
Returns the squares on a column specified by the number
(starting from zero).
:param col_number: The column to get.
:type col_number: int
:return: The list containing the squares on the required column.
"""
col = []
for line in self.squares:
col.append(line[col_number])
return col
def solve_threes(self) -> bool:
"""
Solves the grid recursively to prevent 'three in a row'.
:return: True if a square has been modified, else False.
"""
solved = False
for square in self.squares_to_modify:
if solve_three_square(square):
solved = True
return solved
def solve(self):
solved = True
while solved:
if not self.solve_threes():
solved = False
if self.solve_same_number():
solved = True
# self.solve_different_lines_or_columns()
def solve_same_number(self):
solved = False
for square in self.square_list:
if square.is_empty():
same_line = square.same_line()
count_red = 0
count_blue = 0
for line_square in same_line:
if line_square.state == 'B':
count_blue += 1
elif line_square.state == 'R':
count_red += 1
if count_red == self.size / 2:
square.state = 'B'
elif count_blue == self.size / 2:
square.state = 'R'
if not square.switched:
same_column = square.same_column()
count_red = 0
count_blue = 0
for line_square in same_column:
if line_square.state == 'B':
count_blue += 1
elif line_square.state == 'R':
count_red += 1
if count_red == self.size / 2:
square.state = 'B'
elif count_blue == self.size / 2:
square.state = 'R'
if square.switched:
solved = True
return solved
def solve_different_lines_or_columns(self):
for square in self.square_list:
line = string_from_list(square.same_line())
col = string_from_list(square.same_column())
colored_line = line.replace(' ', '')
if len(colored_line) >= self.size - 2:
for i in range(0, self.size, 1):
if i != square.vert:
line_comp = string_from_list(self.squares_on_line(i))
col_comp = string_from_list(self.squares_on_column(i))